Matematisk-fysiske Meddelelser

udgivet af
Det Kongelige Danske Videnskabernes Selskab Bind 30, no. 18

J. F. STEFFENSEN

København 1956
i kommission hos Ejnar Munksgaard

Synopsis.

Three bodies are assumed to move in a plane, subject to Newton's law of gravitation, one of the bodies being infinitely small, and the two others moving in circles around their common centre of gravitation. To expand the coordinates of the small body in powers of the time is generally assumed to be impractical, but it is shown here that by introducing certain auxiliary dependent variables, the equations of motion are transformed into a differential system of the second degree, permitting to calculate the coefficients of the series by a set of recurrence formulas particularly adapted to the modern calculating machines. Sufficient conditions for the convergence of the resulting series are obtained, and a simple numerical example is given.

[^0]1. We have in view the well-known particular case of the Problem of Three Bodies where the movement takes place in a plane, and two of the masses describe circles about their common centre of gravity, while the mass of the third body is infinitely small. Expansion of the coordinates in powers of the time t can be obtained by successive differentiations of the equations of motion, but this way of calculating the coefficients of the powers of t has been given up as too tedious ${ }^{1}$. We intend to show here that the calculation of the coefficients can be carried out with comparative ease when the equations of motion are transformed into a differential system of the second degree, permitting to calculate the coefficients of t^{ν} by a set of recurrence formulas, particularly adapted to the modern calculating machines. The process is closely related to that employed in one of my papers on the differential equations of G.W. Hill ${ }^{2}$.

The equations of motion are given in Darwin's paper, p. 103. We write them, with a change of notation ${ }^{3}$,

$$
\left.\begin{array}{l}
\frac{d^{2} p}{d t^{2}}-2 N \frac{d q}{d t}+M p\left(r^{-3}-1\right)+(p-1)\left(s^{-3}-1\right)=0 \\
\frac{d^{2} q}{d t^{2}}+2 N \frac{d p}{d t}+M q\left(r^{-3}-1\right)+q\left(s^{-3}-1\right)=0, \tag{1}
\end{array}\right\}
$$

where

$$
\begin{gather*}
r^{2}=p^{2}+q^{2}, \quad s^{2}=r^{2}+1-2 p, \tag{2}\\
N^{2}=M+1 . \tag{3}
\end{gather*}
$$

[^1]Jacobi's integral is

$$
\begin{equation*}
M\left(r^{2}+2 r^{-1}\right)+\left(s^{2}+2 s^{-1}\right)-\left(\frac{d p}{d t}\right)^{2}-\left(\frac{d q}{d t}\right)^{2}=K \tag{4}
\end{equation*}
$$

In these equations p and q are the coordinates of the infinitesimal body, the masses of the finite bodies are M and 1, their distance from each other 1 , and the angular velocity of the system N.

Referring for further particulars to Darwin's paper we put

$$
\begin{equation*}
X=r^{-3}-1, \quad Y=s^{-3}-1, \tag{5}
\end{equation*}
$$

so that

$$
\begin{align*}
& r \frac{d X}{d t}+3(X+1) \frac{d r}{d t}=0, \\
& s \frac{d Y}{d t}+3(Y+1) \frac{d s}{d t}=0 . \tag{6}
\end{align*}
$$

while (1) can be written

$$
\left.\begin{array}{l}
\frac{d^{2} p}{d t^{2}}-2 N \frac{d q}{d t}+M p X+p Y-Y=0 \tag{7}\\
\frac{d^{2} q}{d t^{2}}+2 N \frac{d p}{d t}+M q X+q Y=0
\end{array}\right\}
$$

For the determination of p, q, r, s, X, Y we have the 6 equations (7), (6) and (2) which we propose to satisfy by power series in t without making use of Jacobi's integral. We put

$$
\begin{array}{rlrl}
p=\sum_{\nu=0}^{\infty} a_{\nu} t^{v}, & q=\sum_{\nu=0}^{\infty} b_{\nu} t^{v}, \\
r & =\sum_{\nu=0}^{\infty} c_{\nu} t^{v}, & s=\sum_{\nu=0}^{\infty} d_{\nu} t^{v}, \\
X & =\sum_{\nu=0}^{\infty} e_{\nu} t^{v}, & Y=\sum_{\nu=0}^{\infty} f_{\nu} t^{v} . \tag{10}
\end{array}
$$

Inserting these series in the 6 equations and demanding that the coefficient of t^{n} shall vanish, we find by (7)

$$
\begin{align*}
&(n+1)(n+2) a_{n+2}-2 N(n+1) b_{n+1}+M \sum_{v=0}^{n} a_{v} e_{n-v} \\
&+\sum_{v=0}^{n} a_{v} f_{n-v}-f_{n}=0, \\
&(n+1)(n+2) b_{n+2}+2 N(n+1) a_{n+1}+M \sum_{v=0}^{n} b_{v} e_{n-v} \tag{11}\\
&+\sum_{v=0}^{n} b_{v} f_{n-v}=0,
\end{align*}
$$

by (6)

$$
\begin{align*}
& \sum_{\nu=0}^{n}(v+1) e_{v+1} c_{n-v}+3 \sum_{v=0}^{n}(v+1) c_{v+1} e_{n-v} \\
& +3(n+1) c_{n+1}=0, \\
& \sum_{v=0}^{n}(v+1) f_{v+1} d_{n-v}+3 \sum_{v=0}^{n}(v+1) d_{v+1} f_{n-v} \tag{12}\\
& \\
& +3(n+1) d_{n+1}=0,
\end{align*}
$$

and by (2)

$$
\begin{align*}
\sum_{\nu=0}^{n} c_{v} c_{n-v} & =\sum_{v=0}^{n} a_{v} a_{n-v}+\sum_{v=0}^{n} b_{v} b_{n-v}, \\
\sum_{v=0}^{n} d_{v} d_{n-v} & =\sum_{\nu=0}^{n} c_{v} c_{n-v}-2 a_{n} \quad(n>0), \tag{13}\\
d_{0}^{2} & =c_{0}^{2}+1-2 a_{0} .
\end{align*}
$$

As initial values (constants of integration) we choose the coordinates and components of velocity of the infinitely small body at the time $t=0$, that is $a_{0}, a_{1}, b_{0}, b_{1}$. Hence we find by (13), c_{0} and d_{0} being positive (since r and s represent distances from the finite masses)

$$
\begin{equation*}
c_{0}=\sqrt{a_{0}^{2}+b_{0}^{2}}, \quad d_{0}=\sqrt{c_{0}^{2}+1-2 a_{0}}, \tag{14}
\end{equation*}
$$

whereafter by (10) and (5)

$$
\begin{equation*}
e_{0}=c_{0}^{-3}-1, \quad f_{0}=d_{0}^{-3}-1 \tag{15}
\end{equation*}
$$

The remaining constants are calculated by the recurrence formulas (11) - (13). We state these in the form and order in which they are to be employed.

$$
\begin{gather*}
2 c_{0} c_{n}=\sum_{v=0}^{n} a_{v} a_{n-v}+\sum_{v=0}^{n} b_{v} b_{n-v}-\sum_{v=1}^{n-1} c_{v} c_{n-v} \tag{16}\\
2 d_{0} d_{n}=\sum_{v=0}^{n} c_{v} c_{n-v}-\sum_{v=1}^{n-1} d_{v} d_{n-v}-2 a_{n} \tag{17}\\
-n c_{0} e_{n}=3 \sum_{v=1}^{n} v c_{v} e_{n-v}+\sum_{v=1}^{n-1} v e_{v} c_{n-v}+3 n c_{n} \tag{18}\\
-n d_{0} f_{n}=3 \sum_{v=1}^{n} v d_{v} f_{n-v}+\sum_{v=1}^{n-1} v f_{v} d_{n-v}+3 n d_{n} \tag{19}\\
-n(n+1) a_{n+1}=M \sum_{v=0}^{n-1} a_{v} e_{n-v-1}+\sum_{v=0}^{n-1} a_{v} f_{n-v-1} \tag{20}\\
-2 N_{n} b_{n}-f_{n-1} \tag{21}\\
-n(n+1) b_{n+1}=M \sum_{v=0}^{n-1} b_{v} e_{n-v-1}+\sum_{v=0}^{n-1} b_{v} f_{n-v-1}+2 N n a_{n} .
\end{gather*}
$$

We give below the first few of these recurrence formulas.

$$
\begin{gather*}
c_{0} c_{1}=a_{0} a_{1}+b_{0} b_{1} \\
d_{0} d_{1}=c_{0} c_{1}-a_{1} . \\
-c_{0} e_{1}=3 c_{1}\left(e_{0}+1\right) . \tag{22}\\
-d_{0} f_{1}=3 d_{1}\left(f_{0}+1\right) . \\
-2 a_{2}=M a_{0} e_{0}+f_{0}\left(a_{0}-1\right)-2 N b_{1}, \\
-2 b_{2}=M b_{0} e_{0}+f_{0} b_{0}+2 N a_{1} . \\
2 c_{0} c_{2}=2 a_{0} a_{2}+a_{1}^{2}+2 b_{0} b_{2}+b_{1}^{2}-c_{1}^{2} . \\
2 d_{0} d_{2}=2 c_{0} c_{2}+c_{1}^{2}-d_{1}^{2}-2 a_{2} . \tag{23}\\
-c_{0} e_{2}=2 c_{1} e_{1}+3 c_{2}\left(e_{0}+1\right) . \\
-d_{0} f_{2}=2 d_{1} f_{1}+3 d_{2}\left(f_{0}+1\right) . \\
-6 a_{3}=M\left(a_{0} e_{1}+a_{1} e_{0}\right)+f_{0} a_{1}+f_{1}\left(a_{0}-1\right)-4 N b_{2} . \tag{24}\\
-6 b_{3}=M\left(b_{0} e_{1}+b_{1} e_{0}\right)+b_{0} f_{1}+b_{1} f_{0}+4 N a_{2} .
\end{gather*}
$$

$$
\begin{align*}
c_{0} c_{3} & =a_{0} a_{3}+a_{1} a_{2}+b_{0} b_{3}+b_{1} b_{2}-c_{1} c_{2} \tag{24}\\
d_{0} d_{3} & =c_{0} c_{3}+c_{1} c_{2}-d_{1} d_{2}-a_{3} \\
-3 c_{0} e_{3} & =5 c_{1} e_{2}+7 c_{2} e_{1}+9 c_{3}\left(e_{0}+1\right) . \\
-3 d_{0} f_{3} & =5 d_{1} f_{2}+7 d_{2} f_{1}+9 d_{3}\left(f_{0}+1\right) .
\end{align*}
$$

It is seen that these forms lend themselves easily to the calculating machine.
2. In order to examine the convergence we write (16)-(21) in the following form where the constants of integration and those of zero order have been isolated. In (25), (29) and (30) we assume $n \geqslant 3$, in (26)-(28) $n \geqslant 2$.

$$
\left.\begin{array}{c}
c_{0} c_{n}=a_{0} a_{n}+a_{1} a_{n-1}+b_{0} b_{n}+b_{1} b_{n-1}-c_{1} c_{n-1} \\
+\frac{1}{2} \sum_{v=2}^{n-2}\left(a_{v} a_{n-v}+b_{v} b_{n-v}-c_{v} c_{n-v}\right) \\
d_{0} d_{n}=c_{0} c_{n}-a_{n}+\frac{1}{2} \sum_{v=1}^{n-1}\left(c_{v} c_{n-v}-d_{v} d_{n-v}\right) \\
-n c_{0} e_{n}=3 n c_{n}\left(e_{0}+1\right)+2 \sum_{v=1}^{n-1} v c_{v} e_{n-v}+n \sum_{\nu=1}^{n-1} c_{v} e_{n-v} \tag{28}\\
-n d_{0} f_{n}=3 n d_{n}\left(f_{0}+1\right)+2 \sum_{v=1}^{n-1} v d_{v} f_{n-v}+n \sum_{v=1}^{n-1} d_{v} f_{n-v}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
-n(n+1) a_{n+1}=a_{0}\left(f_{n-1}+M e_{n-1}\right)+a_{1}\left(f_{n-2}+M e_{n-2}\right)+ \tag{29}\\
\sum_{v=2}^{n-2} a_{v}\left(f_{n-v-1}+M e_{n-v-1}\right)+a_{n-1}\left(f_{0}+M e_{0}\right)-f_{n-1}-2 N n b_{n}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
-n(n+1) b_{n+1}=b_{0}\left(f_{n-1}+M e_{n-1}\right)+b_{1}\left(f_{n-2}+M e_{n-2}\right) \tag{30}\\
+\sum_{v=2}^{n-2} b_{v}\left(f_{n-v-1}+M e_{n-v-1}\right)+b_{n-1}\left(f_{0}+M e_{0}\right)+2 N n a_{n}
\end{array}\right\}
$$

We now put, as in an earlier paper ${ }^{1}$,

$$
\begin{equation*}
K_{v}=\frac{\lambda^{v}}{v(v+1)} \quad(\lambda>0) \tag{31}
\end{equation*}
$$

${ }^{1}$ Acta mathematica, 93 (1955), 173.
and assume that it has been proved for $2 \leqslant v \leqslant n$ that

$$
\begin{equation*}
\left|a_{v}\right| \leqslant A K_{v}, \quad\left|b_{v}\right| \leqslant B K_{v} \tag{32}
\end{equation*}
$$

and for $1 \leqslant v \leqslant n-1$ that
$\left|c_{v}\right| \leqslant C K_{v}, \quad\left|d_{v}\right| \leqslant D K_{v}, \quad\left|e_{v}\right| \leqslant E K_{v}, \quad\left|f_{v}\right| \leqslant F K_{v}$.

We then find sufficient conditions, by (25) - (28) for the validity of (33) in the case $v=n$, and by (29) - (30) for (32) in the case $v=n+1$, so that the inequalities (32) and (33) are valid for all v under consideration. We proceed as in the paper quoted, making use of the identity

$$
\begin{align*}
& K_{v} K_{m-v}=\lambda^{m}\left[\left(\frac{1}{v}+\frac{1}{m-v}\right) \frac{1}{m(m+1)}-\right. \\
& \left.\left(\frac{1}{v+1}+\frac{1}{m-v+1}\right) \frac{1}{(m+1)(m+2)}\right] \tag{34}
\end{align*}
$$

From this, writing for abbreviation

$$
\begin{equation*}
s_{n}=\sum_{v=1}^{n} \frac{1}{v} \tag{35}
\end{equation*}
$$

we obtain the sums ${ }^{1}$

$$
\begin{gather*}
\sum_{\nu=1}^{n-1} K_{v} K_{n-v}=2 \frac{n-1+2 s_{n-1}}{n(n+1)(n+2)} \lambda^{n}, \tag{36}\\
\sum_{v=2}^{n-2} K_{v} K_{n-v}=\left(2 \frac{n-1+2 s_{n-1}}{\left.(n+1)(n+2)-\frac{1}{n-1}\right) \frac{\lambda^{n}}{n},}\right. \tag{37}\\
\sum_{\nu=2}^{n-2} K_{v} K_{n-v-1}=\left(2 \frac{n-2+2 s_{n-2}}{n(n+1)} \frac{1}{2(n-2)}\right) \frac{\lambda^{n-1}}{n-1}, \tag{38}\\
\sum_{v=1}^{n-1} v K_{v} K_{n-v}=\frac{n-1+2 s_{n-1}}{(n+1)(n+2)} \lambda^{n} . \tag{39}
\end{gather*}
$$

[^2]3. Dealing first with (25), we obtain, c_{0} being positive, by (32) and (33)
\[

$$
\begin{aligned}
& c_{0}\left|c_{n}\right| \leqslant\left(A\left|a_{0}\right|+B\left|b_{0}\right|\right) K_{n} \\
& +\left(A\left|a_{1}\right|+B\left|b_{1}\right|+C\left|c_{1}\right|\right) K_{n-1} \\
& \quad+\frac{1}{2}\left(A^{2}+B^{2}+C^{2}\right) \sum_{\nu=2}^{n-2} K_{\nu} K_{n-v}
\end{aligned}
$$
\]

or

$$
\left.\begin{array}{c}
c_{0}\left|c_{n}\right| \leqslant\left(A\left|a_{0}\right|+B\left|b_{0}\right|\right) \frac{\lambda^{n}}{n(n+1)} \tag{40}\\
+\left(A\left|a_{1}\right|+B\left|b_{1}\right|+C\left|c_{1}\right|\right) \frac{\lambda^{n-1}}{(n-1) n} \\
+\frac{1}{2}\left(A^{2}+B^{2}+C^{2}\right)\left(2 \frac{n-1+2 s_{n-1}}{(n+1)(n+2)}-\frac{1}{n-1}\right) \frac{\lambda^{n}}{n} .
\end{array}\right\}
$$

If, now, we demand that the right-hand side of this inequality shall be $\leqslant c_{0} C K_{n}=c_{0} C \frac{\lambda^{n}}{n(n+1)}$, we obtain after multiplication by $n(n+1) \lambda^{-n}$ as a sufficient condition for the validity of $\left|c_{v}\right| \leqslant C K_{v}$ in all cases under consideration

$$
\left.\begin{array}{c}
A\left|a_{0}\right|+B\left|b_{0}\right|+\left(A\left|a_{1}\right|+B\left|b_{1}\right|+C\left|c_{1}\right|\right) \frac{n+1}{n-1} \cdot \frac{1}{\lambda} \\
+\frac{1}{2}\left(A^{2}+B^{2}+C^{2}\right)\left(2 \frac{n-1+2 s_{n-1}}{n+2}-\frac{n+1}{n-1}\right) \leqslant C c_{0} . \tag{41}
\end{array}\right\}
$$

We replace this condition by a simpler but more rigid condition obtained by replacing the factors depending on n by absolute numbers which are at least as large.

Since $\frac{n+1}{n-1}=1+\frac{2}{n-1}$, this factor is constantly decreasing and may for $n \geqslant 2$ be replaced by 3 .

Putting next

$$
\begin{equation*}
S_{n}=2 \frac{n-1+2 s_{n-1}}{n+2}-\frac{n+1}{n-1}, \tag{42}
\end{equation*}
$$

and observing that

$$
\begin{equation*}
s_{n} \leqslant 1+\frac{1}{2}+\frac{1}{3}+\frac{n-3}{4}=\frac{13}{12}+\frac{n}{4} \tag{43}
\end{equation*}
$$

so that

$$
s_{n-1} \leqslant \frac{5}{6}+\frac{n}{4}
$$

or $4 s_{n-1} \leqslant n+\frac{10}{3}$, we find by inserting this in (42)

$$
S_{n} \leqslant 2-\frac{14}{3 n+6}-\frac{2}{n-1}
$$

Hence

$$
\begin{equation*}
S_{n}<2 \tag{44}
\end{equation*}
$$

Observing finally that $\frac{n+1}{n-1} \leqslant 3$ for $n \geqslant 2$, we may replace (41) by the more rigid condition

$$
\left.\begin{array}{c}
A\left|a_{0}\right|+B\left|b_{0}\right|+\left(A\left|a_{1}\right|+B\left|b_{1}\right|+C\left|c_{1}\right|\right) \frac{3}{\lambda} \tag{45}\\
+A^{2}+B^{2}+C^{2} \leqslant c_{0} C
\end{array}\right\}
$$

which is independent of n.
4. Next, as regards (26), we find by (36), corresponding to (41), the sufficient condition

$$
\begin{equation*}
C c_{0}+A+\left(C^{2}+D^{2}\right) \frac{n-1+2 s_{n-1}}{n+2} \leqslant D d_{0} \tag{46}
\end{equation*}
$$

The condition that the factor depending on n shall be steadily decreasing may be written in the form

$$
\begin{equation*}
s_{n-1}>\frac{5}{2}+\frac{2}{n} \tag{47}
\end{equation*}
$$

which is satisfied for $n \geqslant 10$. We therefore have in this region ${ }^{1}$

$$
\begin{equation*}
\frac{n-1+2 s_{n-1}}{n+2}<\frac{3}{4}+\frac{1}{6} s_{9}<\frac{5}{4} \tag{48}
\end{equation*}
$$

[^3]which is also valid for $n<10$. We may therefore replace (46) by the simpler but more rigid condition
\[

$$
\begin{equation*}
C c_{0}+A+\frac{5}{4}\left(C^{2}+D^{2}\right) \leqslant D d_{0} \tag{49}
\end{equation*}
$$

\]

5. From (27) we obtain by (39) and (36) as a sufficient condition

$$
\begin{equation*}
3\left|e_{0}+1\right| C+4 C E \frac{n-1+2 s_{n-1}}{n+2} \leqslant E c_{0} \tag{50}
\end{equation*}
$$

and from this, by (48), the more rigid sufficient condition

$$
\begin{equation*}
3\left|e_{0}+1\right| C+5 C E \leqslant E c_{0} \tag{51}
\end{equation*}
$$

Since (28) is obtained from (27) by a simple exchange of letters we may at once by (51) write down the following sufficient condition, resulting from (28)

$$
\begin{equation*}
3\left|f_{0}+1\right| D+5 D F \leqslant F d_{0} \tag{52}
\end{equation*}
$$

6. As regards (29), we have, by (31)-(33) and (38),

$$
\begin{array}{r}
n(n+1)\left|a_{n+1}\right| \leqslant\left|a_{0}\right|(F+M E) \frac{\lambda^{n-1}}{(n-1) n} \\
+\left|a_{1}\right|(F+M E) \frac{\lambda^{n-2}}{(n-2)(n-1)} \\
+A(F+M E)\left(2 \frac{n-2+2 s_{n-2}}{n(n+1)}-\frac{1}{2(n-2)}\right) \frac{\lambda^{n-1}}{n-1} \tag{53}\\
+A\left|f_{0}+M e_{0}\right| \frac{\lambda_{1}^{n_{1}^{\prime}-1}}{(n-1) n}+F \frac{\lambda^{n-1}}{(n-1) n}+2 N B \frac{\lambda^{n}}{n+1}
\end{array}
$$

If we demand that the right-hand side of this shall be $\leqslant n(n+1) A K_{n+1}=A \frac{n}{n+2} \lambda^{n+1}$, we obtain after multiplication by $\frac{n+2}{n} \lambda^{1-n}$ the condition

$$
\begin{align*}
& {\left[\left|a_{0}\right|(F+M E)+A\left|f_{0}+M e_{0}\right|+F\right] \frac{n+2}{(n-1) n^{2}} } \\
&+2 N B \sum_{n(n+1)}^{n+2}+\left|a_{1}\right|(F+M E) \frac{n+2}{n(n-1)(n-2)} \frac{1}{\lambda} \tag{54}\\
&+A(F+M E) R_{\mathrm{n}} \leqslant A \lambda^{2}
\end{align*}
$$

where

$$
\begin{equation*}
R_{n}=\frac{2(n+2)}{n(n-1)}\left(\frac{n-2+2 s_{n-2}}{n(n+1)}-\frac{1}{4(n-2)}\right) \tag{55}
\end{equation*}
$$

We proceed to show that

$$
\begin{equation*}
R_{n} \leqslant \frac{1}{8} \quad(n \geqslant 3) \tag{56}
\end{equation*}
$$

We write (55) in the form

$$
R_{n}=\left(\frac{2}{n-1}+\frac{4}{n(n-1)}\right)\left(2 \frac{s_{n-2}-1}{n(n+1)}+\frac{3}{4} \frac{n-3}{(n+1)(n-2)}\right.
$$

where we may assume $n \geqslant 5$, since $R_{3}=0, R_{4}=\frac{1}{8}$. Now the first factor in R_{n} is evidently decreasing, and the second factor is the sum of two decreasing expressions, since

$$
\frac{s_{n-2}-1}{n(n+1)}>\frac{s_{n-1}-1}{(n+1)(n+2)} \quad(n \geqslant 5)
$$

which can be written

$$
2\left(s_{n-2}-1\right)>1+\frac{1}{n-1},
$$

and

$$
\frac{n-3}{(n+1)(n-2)}>\frac{n-2}{(n+2)(n-1)} \quad(n \geqslant 5)
$$

which can be written

$$
n(n-5)+2>0 .
$$

The remaining factors depending on n in (54) are steadily decreasing, and we find for $n \geqslant 3$

$$
\begin{gather*}
\frac{n+2}{(n-1) n^{2}}=\frac{1}{(n-1) n}+\frac{2}{(n-1) n^{2}} \leqslant \frac{5}{18}, \tag{57}\\
\frac{n+2}{n(n+1)}=\frac{1}{n+1}+\frac{2}{n(n+1)} \leqslant \frac{5}{12} \tag{58}\\
\frac{n+2}{n(n-1)(n-2)}=\frac{1}{(n-1)(n-2)} \tag{59}\\
+\frac{2}{n(n-1)(n-2)} \leqslant \frac{5}{6} .
\end{gather*}
$$

Inserting finally the limits (56) - (59) in (54), we obtain the more rigid, but of n independent, sufficient condition

$$
\begin{align*}
& \frac{5}{18}\left[\left|a_{0}\right|(F+M E)+A\left|f_{0}+M e_{0}\right|+F\right]+\frac{5}{6} N B \lambda \\
& \quad+\frac{5}{6}\left|a_{1}\right|(F+M E) \frac{1}{\lambda}+\frac{1}{8} A(F+M E) \leqslant A \lambda^{2} . \tag{60}
\end{align*}
$$

7. As regards finally (30), a comparison with (29) shows that we obtain the same form as (53), the only difference being that a and b, A and B have been exchanged and the term $F \frac{\lambda^{n-1}}{(n-1) n}$ left out. We may therefore immediately write down the sufficient condition corresponding to (60)

$$
\left.\begin{array}{l}
\frac{5}{18}\left[\left|b_{0}\right|(F+M E)+B\left|f_{0}+M e_{0}\right|\right]+\frac{5}{6} N A \lambda \\
+\frac{5}{6}\left|b_{1}\right|(F+M E) \frac{1}{\lambda}+\frac{1}{8} B(F+M E) \leqslant B \lambda^{2} . \tag{61}
\end{array}\right\}
$$

8. The result of the preceding investigation is that, if for a certain $n \geqslant 3$ it has been proved that (32) is satisfied for $2 \leqslant$ $v \leqslant n$ and (33) for $1 \leqslant v \leqslant n-1$, and if, besides, the inequalities
(45), (49), (51), (52), (60) and (61) are all satisfied, then the expansions (8) - (10) are convergent, provided that $\Sigma K_{v}|t|^{v}$ converges, that is, for $|t| \leqslant \frac{1}{\lambda}$.

The question arises whether, when the constants of integration are arbitrarily given, it is always possible to find such values of $\lambda, A, B, C, D, E, F$ that the six inequalities are all satisfied. We proceed to prove that this is really so.

To begin with, λ can always be chosen so large that (60) and (61) are satisfied, no matter what values the other constants possess, and (45) can for sufficiently large λ be replaced by

$$
\begin{equation*}
A\left|a_{0}\right|+B\left|b_{0}\right|+\frac{5}{4}\left(A^{2}+B^{2}\right)<C\left(c_{0}-\frac{5}{4} C\right) \tag{62}
\end{equation*}
$$

while the three remaining inequalities which we write in the form

$$
\begin{gather*}
A+C\left(c_{0}+\frac{\overline{4}}{4} C\right) \leqslant D\left(d_{0}-\frac{\overline{5}}{4} D\right) \tag{63}\\
3\left|e_{0}+1\right| C \leqslant E\left(c_{0}-5 C\right) \tag{64}\\
3\left|f_{0}+1\right| D \leqslant F\left(d_{0}-5 D\right) \tag{65}
\end{gather*}
$$

are unchanged. Now it follows from (64) and (65) that we must choose

$$
\begin{equation*}
C<\frac{1}{5} c_{0}, \quad D<\frac{1}{5} d_{0} \tag{66}
\end{equation*}
$$

after which (64) and (65) are satisfied, provided that we choose E and F sufficiently large. After this, (62) will be satisfied, if we choose A and B sufficiently small in comparison with C, and (63) if A and C are sufficiently small in comparison with D. In thus choosing small values for A, B, C and D we do not run into difficulties, because (31) - (33) show that small values of these constants can be compensated by choosing λ sufficiently large.

There is, thus, always a solution for sufficiently small values of $|t|$, if $c_{0}>0, d_{0}>0$ as assumed in (14).
9. If at the time $t=0$ we have $q=0, \frac{d p}{d t}=0$, that is $b_{0}=0, a_{1}=0$, certain simplifications occur. In that case there are only the two arbitrary constants a_{0} and b_{1} left, and we find first by (14) and (15), if $a_{0} \neq 0$ and $a_{0} \neq 1$,

$$
\begin{align*}
c_{0}=\left|a_{0}\right|, \quad d_{0} & =\left|a_{0}-1\right|, e_{0}=\left|a_{0}\right|^{-3}-1 \\
f_{0} & =\left|a_{0}-1\right|^{-3}-1 \tag{67}
\end{align*}
$$

The recurrence formulas now show that b_{v} vanishes when v is an even number, and the other coefficients when v is odd. Under these circumstances the working formulas (16) - (21) are best written thus

$$
\left.\begin{array}{c}
-(2 n-1) 2 n a_{2 n}=M \sum_{v=0}^{n-1} a_{2 v} e_{2 n-2 v-2}+\sum_{v=0}^{n-1} a_{2 v} f_{2 n-2 v-2} \\
-2 N(2 n-1) b_{2 n-1}-f_{2 n-2} \\
2 c_{0} c_{2 n}=\sum_{v=0}^{n} a_{2 v} a_{2 n-2 v}+\sum_{v=1}^{n} b_{2 v-1} b_{2 n-2 v+1} \\
-\sum_{v=1}^{n-1} c_{2 v} c_{2 n-2 v} \tag{70}
\end{array}\right\}
$$

$$
\begin{equation*}
-n c_{0} e_{2 n}=3 \sum_{v=1}^{n} v c_{2 v} e_{2 n-2 v}+\sum_{v=1}^{n-1} v e_{2 v} c_{2 n-2 v}+3 n c_{2 n} \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
-n d_{0} f_{2 n}=3 \sum_{v=1}^{n} v d_{2 v} f_{2 n-2 v}+\sum_{v=1}^{n-1} v f_{2 v} d_{2 n-2 v}+3 n d_{2 n} \tag{72}
\end{equation*}
$$

$$
\left.\begin{array}{c}
-2 n(2 n+1) b_{2 n+1}=M \sum_{\nu=1}^{n} b_{2 v-1} e_{2 n-2 v} \tag{73}\\
+\sum_{\nu=1}^{n} b_{2 v-1} f_{2 n-2 v}+4 N n a_{2 n}
\end{array}\right\}
$$

The first few of these formulas are

$$
\begin{align*}
-2 a_{2} & =M a_{0} e_{0}+f_{0}\left(a_{0}-1\right)-2 N b_{1} \\
c_{0} c_{2} & =a_{0} a_{2}+\frac{1}{2} b_{1}^{2} \\
d_{0} d_{2} & =c_{0} c_{2}-a_{2} \tag{74}\\
-c_{0} e_{2} & =3 c_{2}\left(e_{0}+1\right) \\
-d_{0} f_{2} & =3 d_{2}\left(f_{0}+1\right) . \\
-6 & b_{3}=M b_{1} e_{0}+b_{1} f_{0}+4 N a_{2} . \tag{75}
\end{align*}
$$

$$
\left.\begin{array}{rl}
-12 a_{4}= & M\left(a_{0} e_{2}+a_{2} e_{0}\right)+f_{2}\left(a_{0}-1\right)+a_{2} f_{0}-6 N b_{3} . \\
2 c_{0} c_{4}= & 2 a_{0} a_{4}+a_{2}^{2}+2 b_{1} b_{3}-c_{2}^{2} . \\
2 d_{0} d_{4}= & 2 c_{0} c_{4}+c_{2}^{2}-d_{2}^{2}-2 a_{4} . \\
-c_{0} e_{4}= & 2 c_{2} e_{2}+3 c_{4}\left(e_{0}+1\right) . \\
-d_{0} f_{4}= & 2 d_{2} f_{2}+3 d_{4}\left(f_{0}+1\right) . \\
-20 b_{5}=M\left(b_{1} e_{2}+b_{3} e_{0}\right)+b_{1} f_{2}+b_{3} f_{0}+8 N a_{4} . \\
-30 a_{6}= & M\left(a_{0} e_{4}+a_{2} e_{2}+a_{4} e_{0}\right)+f_{4}\left(a_{0}-1\right)+a_{2} f_{2} \\
& +a_{4} f_{0}-10 N b_{5} . \\
c_{0} c_{6}= & a_{0} a_{6}+a_{2} a_{4}+b_{1} b_{5}+\frac{1}{2} b_{3}^{2}-c_{2} c_{4} . \tag{78}\\
d_{0} d_{6}= & c_{0} c_{6}+c_{2} c_{4}-d_{2} d_{4}-a_{6} . \\
-3 c_{0} e_{6}= & 3\left(c_{2} e_{4}+2 c_{4} e_{2}+3 c_{6} e_{0}\right)+e_{2} c_{4}+2 e_{4} c_{2}+9 c_{6} . \\
-3 d_{0} f_{6}= & 3\left(d_{2} f_{4}+2 d_{4} f_{2}+3 d_{6} f_{0}\right)+f_{2} d_{4}+2 f_{4} d_{2}+9 d_{6} .
\end{array}\right\}
$$

10. As a simple numerical example of the application of (74) - (78) we choose $a_{0}=\frac{1}{2}, \quad b_{1}=-1$ besides the already assumed $b_{0}=0, a_{1}=0$ leading to (67). For N and M we choose the values $N=1 \cdot 1, M=\cdot 21$ which satisfy (3). The results are given in the table below.

v	a_{ν}	c_{2}		d_{ν}
0	-5	-5		. 5
2	2825	$1 \cdot 2825$. 7175
4	-. 4332729	-4.407273		-2.4107271
6	$1 \cdot 3130591$	19•199425		8.728045
v	e_{V}	$f v$	v	b_{v}
0	7.	7.	1	-1.
2	61.56	$-34 \cdot 44$	3	$1 \cdot 2045$
4	$527 \cdot 3519$	214.5577	5	$-2 \cdot 687845$
6	- $4442 \cdot 1231$	-1319.5487		

A partial check on these calculations is obtained by calculating the value of Jacobi's constant K by (4) for various values of t. I have found

$$
\begin{array}{ll}
t=0, & K=4 \cdot 1425 \\
t=\cdot 03, & K=4 \cdot 1424999
\end{array}
$$

which seems satisfactory.
As regards the convergence, (32) and (33) are satisfied by the coefficients given in the table if, for instance, we choose $\lambda=20, A=\cdot 005, B=\cdot 002, C=\cdot 02, D=\cdot 04, E=1 \cdot 2, F=$ 3.2 , and since these values also satisfy all the six inequalities (45), (49), (51), (52), (60) and (61), the expansions (8) - (10) are at least convergent for $|t| \leqslant \frac{1}{20}$.

This space of time may at first appear to be small, but the expansion for q shows that it corresponds to a movement in the vertical direction of nearly one tenth of the original distance of the infinitesimal body from either of the two finite bodies.

[^0]: Printed in Denmark
 Bianco Lunos Bogtrykkeri A-S

[^1]: ${ }^{1}$ G. H. Darwin: "Periodic Orbits". Acta mathematica, 21 (1897), 129-132.
 2 J. F. Steffensen: "On the Differential Equations of Hill in the Theory of the Motion of the Moon (II)'. Acta mathematica, 95 (1956), 25-37.
 ${ }^{3}$ Darwin's x, y, n, v, ϱ, C have in succession been replaced by p, q, N, M, s, K.

[^2]: ${ }^{1}$ Interpreted as zero, if the upper limit of summation is less than the lower.

[^3]: 1 A table of s_{n} is found in S. Spitzer: Tabellen für die Zinses-Zinsen und Renten-Rechnung, Wien 1897, 369-370.

