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Synopsis.
Three bodies are assumed to move in a plane, subject to Newton’s law of 

gravitation, one of the bodies being infinitely small, and the two others moving 
in circles around their common centre of gravitation. To expand the coordina
tes of the small body in powers of the time is generally assumed to be im
practical, but it is shown here that by introducing certain auxiliary dependent 
variables, the equations of motion are transformed into a differential system 
of the second degree, permitting to calculate the coefficients of the series by a 
set of recurrence formulas particularly adapted to the modern calculating ma
chines. Sufficient conditions for the convergence of the resulting series are ob
tained, and a simple numerical example is given.

Printed in Denmark 
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1. We have in view the well-known particular case of the 
Problem of Three Bodies where the movement takes place in a 
plane, and two of the masses describe circles about their com
mon centre of gravity, while the mass of the third body is in
finitely small. Expansion of the coordinates in powers of the time 
t can be obtained by successive differentiations of the equations 
of motion, but this way of calculating the coefficients of the 
powers of t has been given up as too tedious1. We intend to show 
here that the calculation of the coefficients can be carried out 
with comparative ease when the equations of motion are trans
formed into a differential system of the second degree, permitting 
to calculate the coefficients of tv by a set of recurrence formulas, 
particularly adapted to the modern calculating machines. The 
process is closely related to that employed in one of my papers 
on the differential equations of G.W. Hill2.

The equations of motion are given in Darwin’s paper, p. 103. 
We write them, with a change of notation3,

(1)

where
(2) 

(3)

d27

dl2 

1 G. H. Darwin: “Periodic Orbits”. Acta mathematica, 21 (1897), 129—132.
2 J. F. Steffensen: “On the Differential Equations of Hill in the Theory of 

the Motion of the Moon (II)”. Acta mathematica, 95 (1956), 25—37.
3 Darwin’s x, y, n, v, y, C have in succession been replaced by p, q, N, M, 

s, K.
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In these equations p and q are the coordinates of the in
finitesimal body, the masses of the finite bodies are M and 1, 
their distance from each other 1, and the angular velocity of the 
system N.

Referring for further particulars to Darwin’s paper we put

so that

while (1) can be written

(5)

(6)

(7)

For the determination of p, q, r, s, X, Y we have the 6 equa
tions (7), (6) and (2) which we propose to satisfy by power 
series in t without making use of Jacobi’s integral. We put

00 00

p = S avtV>

v = 0
7 = Z

v — 0
(8)

r
00

= s = y d,?, (9)
V = 0 V = 0

X
oo

=
v = 0

r = z /X
v = 0

(10)

Inserting these series in the 6 
the coefficient of ln shall vanish,

equations and demanding that 
we find by (7)
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(n > 0),

by (6)
n

Z(*

v = 0

and by (2)
n
yc c

LvLn-v
v = O

n
^v^n-v

V = O

n
H- 1) +1 cn—y “T 3 (v ~r 1 ) cv j_ ere_ v

l' = o
+ 3 (n 4- 1 ) cM + i = O ,

(11)

(12)

(13)

As initial values (constants of integration) we choose the 
coordinates and components of velocity of the infinitely small 
body at the time t = 0, that is «o, ai, b0, bi. Hence we find 
by (13), co and do being positive (since r and s represent distances 
from the finite masses)

whereafter by (10) and (5)

t’o = c03— 1,

do = |/cq + 1 —2«o» (14)

A = dô3- 1 • (15)

The remaining constants are calculated by the recurrence 
formulas (11) — (13). We state these in the form and order in 
which they are to be employed.
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(16)

(17)
v = O

(18)ncoe«

2 C0Cn =

- n do f n

2 (lodn ( v c n - v

vcn-V"

n-1
dv (ln -i’~- (ln ■

n
3 vdvfn_v
V=1

"y(ln-v
v = O

n

1» = 1

n

V =

71 — 1 71 — 1
(11 “I“ 1 ) On + 1 XI D, (lv (}n^v — i “H D fn — i’ — l

V = O 7’ = O

— 2 Nnbn — fn-1-
(20)

n -1 n -1
— n (11 + 1) bn + l = /?re77-v-l + A bvfn-v-l + - iVnn« . (21)

v = O v — O

We give below the lirst few of these recurrence formulas.

Co 1’1 = O0«l + /1()/11-

(/o(/l = Co Ci — «1 .

— Co Cl = 3 Cl (co + 1) •

— do fi — 3 di(fo +1).

— 2 a a = Mao co + fo(ao — 1 ) — 2 Nbi,

— 2 Ô2 = Mboeo + fobo + 2 Nai.

2 coC2 = 2 a0«2 + af + 2 bob-2 + b[ — cf.

2 dod2 = 2 C0C2 + cf — df — 2 <7 2.

— coC2 == 2 ci ei + 3 C2(co + 1 ).

— do fz = 2 hi fi + 3 1/2 ( fo + 1 ) .

— 6 «3 = M (no d + ai co) + fo ai + /1 (ao — 1) — 4 N/?2.

— 6 Z>3 = XI (boei + bico) + /10/1 + bi/o + 4 N(i2.
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lC0C3 — ao (is + ai «2 + bobs + bib% — cic2- 

do ds = cocs + C1C2 — (bids — as-

— 3 coes = 5 cie2 + 7 c2ei + 9 c3(eo + 1).

— 3 do fs = 5 di fa 7 do fi + 9 ds (fo + 1).

(24)

It is seen that these forms lend themselves easily to the cal
culating machine.

2. In order to examine the convergence we write (16)—(21) 
in the following form where the constants of integration and 
those of zero order have been isolated. In (25), (29) and (30) 
we assume n >3, in (26)—(28) n >2.

CoCn = (lo (tn + dldn-l + bobn + 5iZ>n-l — CiCra-l
I n-2

d- — "/*  , (Up dn_v 4“ bv bn_v cv cn_v) .
zv = 2

(25)

J n-1

dodn = cocn — an (crcn-v
= 1

dv dn_v). (26)

n-l n—1
- ncoen = 3 nc„(e0 + 1) + 2 vcven-v + n^ cven_v. (27)

V = 1 V = 1

-ndofn = 3 ndn(fo + 1) + 2 vdvfn_v + n £ dvfn_v. (28)
V = 1 V = 1

— n(n +l)a„ + i = d0(fn-i + Men_i) + (ii(fn-2 + Men-2) + 
n-2

dv(fn_v_1 +Men_v_1) + an_1(f0+ Me0) —/n-i —2 Nnbn.
V = 2

(29)

11(114“ l)5n + l — bo (fn-1 4- Men -1) 4“ bi (fn-2 4“ Men-2) 
n-2

4~ bv(fn_v_1 4- Men_v_1) 4- bn_1(fo + Meo) 4- 2 Adian.
V = 2

(30)

We now put, as in an earlier paper1,

Åv
v v (v 4- 1 )

1 Acta mathematica, 93 (1955), 173.

(A > 0) (31)
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and assume that it has been proved for 2 < v < n that

1 fiv 1 < , 1 M < ba; (32)

and for 1 < v < n — 1 that

1 cv 1 < CA;, 1 dv 1 < I)KV, i er 1 <ea;, I fv 1 <fa;. (33)

We then find sufficient conditions, by (25) — (28) for the valid
ity of (33) in the case v = n, and by (29) — (30) for (32) in the 
case v = n + 1, so that the inequalities (32) and (33) are valid 
for all v under consideration. We proceed as in the paper quoted, 
making use of the identity

m — v ' m (n? + 1 )

( 1 1
\r 4- 777 ---- V 4- 1 / (m r 1 ) (m + 2).

1 Interpreted as zero, if the upper limit of summation is less than the lower.

(34)

From this, writing for abbreviation

V = 1
we obtain the sums1

n — 1 + 2 sM-i o2 — ---- ---------X»
il (n + 1 ) (n 4- 2)

(35)

(36)

9 n — 1 +2 sw_i 1 \ /.n
(n + 1) (n + 2) R — 1'7?’ (37)

n-1
v^v^n—v

v = i

7? — 1 4- 2 sw_i 
(TTl ) (n~+l) (39)
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3. Dealing first with (25), we obtain, co being positive, by 
(32) and (33)

or

Co I ('n I < (A I öo I + B I 5o I) Kn

+ (A I m I + B I bi I + C I ci I) Kn-i 

1(A2 + ß2 + C2)“̂  KrK„_r
- v = 2

Co I Cn I < (A I Oo + B\bo I) n ( n ~+ 1)

4- (A I ai I + B I bi I + C I ci I);----- Ta(n — 1 ) n

- (A2 + B2 + C2) | 2 71 — 1 +2 sn_i 1 J 
(n 4- 1) (n + 2)_n — 1/ n '

(40)

If, now, we demand that the right-hand side of this inequality

shall be < coCKn — coC ------ , we obtain after multiplica-
7i (77 4- 1 )

tion by n (n 4~ 1) k~n as a sufficient condition for the validity 
of |cv I < CKV in all cases under consideration

.4 I «o I + B I b0 I + (A I ai I + B I Z>i I + C | a 1)^4 • -
7? ---- 1 À

< Cco.

(41)

We replace this condition by a simpler but more rigid con
dition obtained by replacing the factors depending on 71 by 
absolute numbers which are at least as large.

71—1 2
Since -------- =14- , this factor is constantly decreasing

71 — 1 71 — 1
and may for 71 > 2 be replaced by 3. 

Putting next
n — 1 4- 2 sn — i 71 4- 1 y _ j —

7l + 2 71—1
(42)

and observing that
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(43)

so that

2

Hence
(44)Sn < 2 .

may replaceObserving finally that

(45)

< cot’

n — 1

- , we find by inserting this in (42)

n + 1
—— < 3 
n — 1

(41) by the more rigid condition

14
Sn <2-------

3 n + 6

which is independent of n.
4. Next, as regards (26), we find by (36), corresponding to 

(41), the sufficient condition

Cco + A (C2

1 A table of sn is found in S. Spitzer: Tabellen für die Zinses-Zinsen und 
Renten-Rechnung, Wien 1897, 369—370.

< Odo • (46)

The condition that the factor depending on n shall be steadily 
decreasing may be written in the form

5 2
Sn — 1 > ~ 42 n

which is satisfied for n > 10. We therefore have in this region1

Sn — 1---- < (48)
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which is also valid for n < 10. \Vc may therefore replace (46) 
by the simpler but more rigid condition

Cco +A + |(C2 + L>2) <Dd0. (49)

5. From (27) we obtain by (39) and (36) as a sufficient 
condition

71 — 1 + 2 Sn - 1
3 I eo + 1 I C + 4 CE----------------------< Fc0,

n + 2
(50)

and from this, by (48), the more rigid sufficient condition

3 I co + 1 I C + 5 CE < Eco ■ (51)

Since (28) is obtained from (27) by a simple exchange of 
letters we may at once by (51) write down the following sufficient 
condition, resulting from (28)

3 I fo + 1 I D + ÖDF <Fd0. (52)

6. As regards (29), we have, by (31)—(33) and (38),

n (n + 1) I flra + i I < I «o I (F + ME)
(n — 1) 77

I m I (F + ME) zm_2

A (F + .WE)
n (n + 1)

— 2 F 2 Sn— 2

Ân'~1 Ån
+ A I fo + Me0 I ------- + F ----- -------— + 2 NB ——.

(77 --- 1 ) 77 (77 ---- 1 ) 77 II + 1

(53)

If we demand that the right-hand side of this shall be
77

< 77 (77 + 1) A/\w + i = A--------Ån + 1, we obtain after multiplica-
, o 77 + 2Z7 “T- 2

tion by ------- the condition
77
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I «o I ( F + ME) + A | /0 + Me0 | + F] - ” + " -
(n — 1 ) n2

+ 2 XB
n -f~ 2 

n (n + 1)
Z + I gi I (F + ME) — 

n (n
n + 2 1

1) (jî — 2)Z

+ A(F + ME) Bn < A Â2
where

2 (n + 2) (n — 2 + 2 .sn_2 1
n (n —- 1) ' tî (n + 1) 4 (n — 2)

(54)

(55)

We proceed to show that

(n >3). (56)

Wc write (55) in the form

4 \ / sn - 2 — 1 3 n — 3
n (n — 1 ) ' \ n (n + 1) 4 (71 + 1) (n — 2)

1
where we may assume n X 5, since B$ = 0, B^ = -. Now the

first factor in Bn is evidently decreasing, and the second factor 
is the sum of two decreasing expressions, since

be writtenwhich can

71— 1 ’
and

71 — 3 71 — 2

which can be written

ti (n — 5) + 2 > 0.
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steadilv(54) are

91

(58)

The remaining factors depending on n in 
decreasing, and we find for n 3

a
12

n + 2
(n — 1) n2 (n — 1 ) n

Il + 2 1
n(n—l)(n —2) (n —l)(n —2)

2 5
_L_--------- -------------------

n (n — 1) (li — 2) 6

(59)

Inserting finally the limits (56) — (59) in (54), we obtain the 
more rigid, bid of n independent, sufficient condition

— [| a0 I (F + J/E) + A I fo + 3/eo I + F] + - NBÅ
18 6

+ 11 ai I (F + ME) ^- + -A(F + ME) < A z2. 
6 z 8

(60)

7. As regards finally (30), a comparison with (29) shows 
that we obtain the same form as (53), the only difference being 
that a and b, A and B have been exchanged and the term

...F------------ left out. We may therefore immediately write down the
(n —l)n

sufficient condition corresponding to (60)

— [| b0 I (F + ME) + B\f0 + MeQ I ] + 7 A'Az
18 6

+ f I il I (F + ME) 1 +1B (F + Mli)
(61)

8. The result of the preceding investigation is that, if for a 
certain n > 3 it has been proved that (32) is satisfied for 2 < 
v < n and (33) for 1 < v < n — 1, and if, besides, the inequalities 
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(45), (49), (51), (52), (60) and (61) are all satisfied, then the 
expansions (8) — (10) are convergent, provided that EKV | t |v

1 
converges, that is, for | t | .

The question arises whether, when the constants of integration 
arc arbitrarily given, it is always possible to find such values of 
Å, A, B, C, 1), E, F that the six inequalities are all satisfied. We 
proceed to prove that this is really so.

To begin with, Â can always be chosen so large that (60) 
and (61) are satisfied, no matter what values the other constants 
possess, and (45) can for sufficiently large z be replaced by

A I «o I + « I b0 |+Ta2 + B2) < C L-;C| (62)
4 \ 4 ,

while the three remaining inequalities which we write in the form

A + clco + jCj <7>(d0-jP (63)

3 I t’o + 1 I C < E (co — 5 C), (64)

3 I fo + 1 I D < F (d0 3 I)), (65)

are unchanged. Now it follows from (64) and (65) that we must 
choose

C < — co, D <Z — do, (66)
5 a

after which (64) and (65) are satisfied, provided that we choose 
E and F sufficiently large. After this, (62) will be satisfied, if 
we choose A and B sufficiently small in comparison with C, 
and (63) if A and C are sufficiently small in comparison with 
I). In thus choosing small values for A, B, C and I) we do not 
run into difficulties, because (31) — (33) show that small values 
of these constants can be compensated by choosing Z sufficiently 
large.

There is, thus, always a solution for sufficiently small values 
of |^|, if co > 0, do > 0 as assumed in (14).
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9. If at the time t = 0 we have « = 0, - = 0, that is1 dt
bo = 0, m = 0, certain simplifications occur. In that case there 
are only the two arbitrary constants (to and hi left, and we find 
first by (14) and (15), if ao 4= 0 and (to + 1,

co = I n0 I, do = | n0 — 1 |, co = | no |_ 3 — 1 , 

fo= I no — 1 I "3 — 1. I
(67)

The recurrence formulas now show that bv vanishes when v is 
an even number, and the other coefficients when v is odd. Under 
these circumstances the working formulas (16) — (21) are best 
written thus

— (2 n —• 1 ) 2 nci2n
n-l

M . a2v
V = 0

n — 1
^2n-2v—2~^~ ^2vf2n-2v—2

v = 0

— 2 A7 (2 71 — 1 ) bi n -1 — f2n — 2 •

(68)

n n
- c0c2n = zL a2v (l2n-2v “T ^2v-l ^2n-2v +1

v = 0 v — 1
n-l

c2 v c2 n - 2 v •
v=l

(69)

2 d0d2n
n — 1
- ^2 v^2n — 2v ^2n‘

v = 1
(70)

n(lof2n
n n-l

3 , vd2yfin—iv T V f2v ^2 n — 2v 4""
V = 1 V = 1

3 nd2n. (72)

n

2 77 (2 71 — 1) &2n+l = ^2v-l e2n-2v
v = 1

n
+ 'y b2v_y Î2n —2 v 2 n •4 JVun.

(73)
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The first few of these formulas are

--  2 (12 —

dodz —

----Co 62 =

— dof2 =

Maoeo + /o («o —1) —-2 A7>i.

«0«2 + h>t

Co C‘2 ---- <72 •

3 C2 (co + 1) .

3 dz (/o + 1 ) •

(74)

— 6 />3 = J/ôieo + bifo + 4 Ar«2. (75)

— 12 «4 = M (<7oe2 + «2 Co) + /2 («0 — 1) + «2/6 — 6 A7>3.

2 C0C4 = 2 aocu + Og + 2 bibs — c%.

2 do di = 2 co C4 + Cg — d£ — 2 a4 •

-- Co 64 = 2 C2 C2 + 3 C4 (co + 1 ) •

— (/0/4 = 2 dzfz + 3 c/4 (/o + 1).

(76)

- 20 65 = M (biC2 + b3eo) + bif2 + b3fo + 8 A'«4. (77)

---- 30 «6 = M («0Ö4 + «2 62 + «460) + fl («0 ---- 1 ) + «2/2

+ fiifo — 10 Nb5 ■

coco = (iodo + (12«4 + bl b5 +-5q — C2C4.
2

dodo — co co + C2C4 — dzdi — do.

— 3 co 66 = 3 (c2 e4 + 2 C4 e2 + 3 co co) + 62 C4 + 2 64 cz + 9 Cß.

— 3 dofo = 3 (d2^ + 2<74f2 + 3d6A) + M4 + 2/-4(/2 + 9rf6.

(78)

10. As a simple numerical example of the application of 
1

(74) — (78) we choose do = -, bi = — 1 besides the already 

assumed b0 = 0, «i = 0 leading to (67). For Ar and M we choose 
the values N = 1-1, M = -21 which satisfy (3). The results are 
given in the table below.
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of t. I have found

V av dy

0 •5 ■5 •5
2 •2825 1-2825 •7175
4 -—4332729 —4-407273 —2-4107271
6 1-3130591 19199425 8-728045

V t’r fv v bv

0 1- 1 —1-
2 —61 -56 —34-44 3 1-2045
4 527-3519 214-5577 5 —2-687845
6 —4442-1231 —1319-5487

A partial check on these calculations is obtained by calcu-
lating the value of Jacobi ’s constant K by (4) for various values

t = 0, K = 4-1425

t = -03, K = 4-1424999

which
As

seems satisfactory, 
regards the convergence, (32) and (33) are satisfied

the coefficients given in the table if, for instance, we choose 
z = 20, A = -005, B = -002, C = 02, I) = ‘04, E = 1'2, F = 
3.2, and since these values also satisfy all the six inequalities 
(45), (49), (51), (52), (60) and (61), the expansions (8) — (10)

1
are at least convergent for I t \ <-—.

20
This space of time may at first appear to be small, but the 

expansion for q shows that it corresponds to a movement in 
the vertical direction of nearly one tenth of the original distance 
of the infinitesimal body from either of the two finite bodies.

Indleveret til selskabet den 30. januar 1S)5(>. 
Færdig fra trykkeriet den 29. maj 195(>.
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